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Chapter 12. 

Proof. 

In Unit One of this Mathematics Specialist course we met the idea of proof. 
In particular • we deduced a number of geometrical truths by reasoning from other 

accepted truths, i.e. we used deductive proof 
• we used our understanding of vectors to prove a number of 

geometrical truths, 
• we used proof by contradiction, in which the technique is to assume 

that the opposite of what we are trying to prove is true and then 
follow correct logical argument only to arrive at a contradiction, thus 
showing that our initial assumption must be wrong. 

In this chapter we will continue our consideration of proof but now our emphasis is not 
so much on proving geometrical truths but instead we concentrate more on proving 
various truths involving real numbers, R. The methods of proof by exhaustion and proof 
by induction are then particularly useful. 
Real numbers are either rational (can be expressed as a fraction) or irrational (cannot 
be expressed as a fraction). To define rational and irrational numbers more formally we 
would say that rational numbers can be expressed in the form - where a and b are 
integers with b * 0, whilst irrational numbers cannot be expressed in this form. Every 
real number has a decimal equivalent. The decimal equivalents of rational numbers are 
either terminating decimals or recurring decimals. 

Example 1 
Find the following recurring decimals as fractions: (a) 0-222 222 222 ... 

(b) 0-212121212... 

(a) Let A = 0-222 222 222... «-® 
then 10A = 2-222 222 222... «-® 
®-<S> 9A = 2 

2 
Hence A = -

9 

(b) Let B = 0-212121212... «-® 
then 100B = 21-212121212... <-® 
® - @ 99A = 21 

21 7 
Hence A = — i.e. — . 

99 33 
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You should also be familiar with the idea that one counter example can show a general 
conjecture to be false. 

Consider, for example, the claim: 

Checking some prime numbers: 13 
11 

7 
23 

All prime numbers 
are odd numbers. 

an odd number 
an odd number 
an odd number 
an odd number 

might lead us to believe the statement to be true but with just one counter example, the 
number 2, a prime number but not an odd number, we show the general statement to be 
false. 

We might then adjust the statement in 
the light of the counter example: 

All prime numbers over 
2 are odd numbers. 

In some cases we may be able to prove a general statement to be true 

Consider, for example, the claim: 
The sum of two consecutive 
positive integers is always 

an odd number. 

Considering some specific cases: 
For the consecutive positive integers 5 and 6: 
For the consecutive positive integers 12 and 13: 
For the consecutive positive integers 21 and 22: 

5 + 6 = 11, 
12 + 13 = 25, 
21 + 22 = 43, 

an odd number, 
an odd number, 
an odd number. 

To prove the statement true we could proceed as follows: 

If x is a positive integer then we can represent two consecutive positive integers 
asxandx+ 1. 
The sum of these two integers is then x + x + 1 = 2x+l. 
Now with x an integer 2x must be even. 
Hence 2x + 1 must be odd and the statement is proved to be true. 
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Exercise 12A 
For questions 1 to 10 state whether you think the given conjecture is true or false. 
If you think it is false, give one example of when it is false. 
If you think it is true, give three examples of when it is true, and try to prove it to be true. 

1. If we square any even 
counting number greater 
than 2 and then subtract 
1 we get a mutiple of 5. 

All multiples of 5 are 
also multiples of 10. 

4. 

The cube of any even 
integer is always a 

multiple of 8. 

All right triangles are 
isosceles. ¿T3) 

7. 

If we add together an 
integer squared, six times 
the integer and 9 we get 

a square number. 

6. 

The product of two even 
numbers is always even. 

9. 

The sum of three 
consecutive positive 

integers will always be a 
multiple of 3. ^ 

The square of an odd 
number is always an 

odd number. 

C 

The product of two 
consecutive even 
whole numbers is 

always a multiple of 8. 

10. 
Multiplying any odd 

counting number by itself 
and then adding 7 always 

gives a multiple of 8. -43 
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Proof by exhaustion. 
In this sense the word exhaustion is not used to mean that the proof tires us out and 
makes us exhausted! Instead the use of the word exhaustion means that the proof 
"exhausts all possibilities", it "considers completely all possible options". For example 
consider the following claim: 

The square of any integer is always either 
or 

a multiple of 5 
1 more than, or 4 more than, a 
multiple of 5. 

Now the integer to be squared could be 
a multiple of 5 itself. 
1 more than a multiple of 5. 
2 more than a multiple of 5. 
3 more than a multiple of 5. 

or 4 more than a multiple of 5. 

Which we could represent as 5x for integer x. 
Represented by 5x + 1, for integer x. 
Represented by 5x + 2, for integer x. 
Represented by 5x + 3, for integer x. 
Represented by 5x + 4, for integer x. 

These possibilities together exhaust all options. Hence if we can prove the statement 
true for all these options we will have proved the statement true for all integers. 
Completing this proof is one of the questions of the next exercise. 

Exercise 12B. Use proof by exhaustion for each of the following. 

1. Prove that: 
The square of any integer always has the same parity as the integer. 
(The parity of a number refers to it being even or odd.) 

2. Prove that: 
The square of any integer is always either a multiple of 5 

or 1 or 4 more than a multiple of 5. 
(Hint: See earlier on this page.) 

11. Express each of the following numbers, each of which involve a recurring decimal, 
as a fraction. (a) 0-555 555 555 ... 

(b) 0-75 
(c) 0-636 363 636... 
(d) 2-231 
(e) 0-231444444... 

12. By assuming that V2 = a fraction expressed with a and b having no common 
b 

factors (i.e. fully cancelled) and with a and b as integers, b ± 0, use the method of 
proof by contradiction to prove that V2 is in fact irrational. 
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3. By considering integers as multiples of 3 
or 1 more than a multiple of 3 
or 

Prove that: 
The cube of any integer is always either a multiple of 9 

or 1 more or 1 less than a multiple of 9. 

4. A family of sequences is defined by the rule 
T n + l = 3 T n + 2> where T n is the n t h term. 

For example, 
withT x = 3, T 2 = 3(3)+ 2 = 11 with ^ = 4, T 2 = 3(4) + 2 = 14 

T 3 = 3(11) + 2 = 35 T 3 = 3(14) + 2 = 44 

T 4 = 3(35) + 2 = 107 T 4 = 3(44) + 2 = 134 

Prove that for sequences in this family, whatever the parity of a particular term is 
then the next term will have the same parity. (The parity of a number refers to it 
being even or odd.) 

5. Prove that: r 

For integer x, x > 1, fac tor^ 5 -x ] 

x 5 -x x-{x- ï)-[x + 1 > 0 2 + 1) 

is always a multiple of 5. 

Is it always a multiple of 10? 
Is it always a multiple of 20? Justify your answers. 

6. Prove that: r 

For integer x, x > 1, factor(x 7-x) 

xJ X 

is always a multiple of 7. 

7. Noticing that 3 3 - 3 = 24 
4 3 - 4 = 60 
5 3 - 5 = 120 

John conjectured (suggested) that 
For x any integer greater than 2 the expression x3 - x is always divisible 

by 12. 
Is John's conjecture correct? 
If yes, prove it. If no, make a similar conjecture of your own involving the 
divisibility of x 3 - x and prove your conjecture true. 
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Consider the following: 

1 x 2 

1 x 2 + 2 x 3 

1 x 2 + 2 x 3 + 3 x 

1 x 2 + 2 x 3 + 3 x 

1 x 2 + 2 x 3 + 3 x 

4 

4 + 4 x 5 

4 + 4 x 5 + 5 x 6 

2 

2 + 6 

2 + 6 + 12 

2 + 6 + 12 + 20 

2 + 6 + 12 + 20 + 30 

Verify that for each of the above the following formula is true: 

1 x 2 + 2 x 3 + 3 x 4 +.... + n(n + 1) = | (n + 1) (n + 2) 

Proof by induction. 

Consider the following sums of square numbers: 

l 2 = 1 

l 2 + 2 2 = 1 + 4 

l 2 + 2 2 + 3 2 = 1 + 4 + 9 

l 2 + 2 2 + 3 2 + 4 2 = 1 + 4 + 9 + 16 

l 2 + 2 2 + 3 2 + 4 2 + 5 2 = 1 + 4 + 9 + 16 + 25 

l 2 + 2 2 + 3 2 + 4 2 + 5 2 + 6 2 = 1 + 4 + 9 + 16 + 25 + 36 

Verify that for each of the above the following formula is true: 

l 2 + 2 2 + 3 2 + .... + n 2 = | (n + 1) (2n + 1) 
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The previous page involved two rules, 

l 2 + 2 2 + 3 2 + .... + n 2 I (n + 1) (2n + l ) 

and 1 x 2 + 2 x 3 + 3 x 4 +.... + n(n + 1) I (n + 1) (n + 2). 

We could verify the rules to be true for various positive values of n but how would we 
prove the above formulae true for all positive integer values of n? 

One suitable method of proof for these situations is proof by induction. 

In proof by induction we follow the steps: 

® Prove that if the statement is true for some general value of n, say n = k, then it 
must also be true for the next value of n, i.e. n = k + 1. 

® Prove that there is a value of n, usually n = 1, for which the statement is true. 

Question: Why do these two steps form a proof? 
Answer: Step ® proves that the rule is true for n = 1 but then, by step ®, it must therefore be true for n = 2. 

But if it is true for n = 2, step ® means that it must be true for n = 3. 
But if it is true for n = 3, step ® means that it must be true for n = 4. 
But if .... etc, etc. 
Hence the statement must be true for all positive integer n. 

then the infinite ladder must exist. 

and that 

If we can prove that 

Proof by induction is like "an infinite ladder". 

• at least one rung does exist, 

if any rung exists then the 
next rung must also exist, 
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Example 2 
Use the method of proof by induction to prove that 

l 2 + 2 2 + 3 2 + .... + n 2 = | (n + 1) (2n + 1) 

for all integer n > 1. 

Let us assume that the rule applies for n = k, i.e. 

l 2 + 2 2 + 3 2 + .... + k 2 = g (k+l)(2k + l ) . 

Now consider the situation for n = k + 1, i.e. consider 

l 2 + 2 2 + 3 2 + .... + k 2 + (k + l ) 2 

It follows that 

! 2 + 2 2 + 3 2 + + k 2 + ( k + l ) 2 = I [k + l)(2k + l ) + ( k + l ) 2 

= ^ (k(2k+l) + 6Ck + l)) 

= ^ r ^ ( 2 k 2 + 7k + 6) 

= ^ ( k + 2)(2k + 3) 

Thus l 2 + 2 2 + 3 2 + .... + (k+ l ) 2 = (k+ 1 + 1) (2(k+ 1) + 1) 

i.e. the initial rule applied for n = k + 1. 
Hence, if the initial rule is true for n = k, it is also true for n = k + 1. 

? 1 
If n = 1, the rule claims that 1 6 ^ ^ 

= 1 which is true. 

Thus: If the initial rule is true for n = k, it is also true for n = k + 1. 
And: The rule is true for n = 1. 

Hence, by induction, l 2 + 2 2 + 3 2 + .... + n 2 = (n + 1) (2n + 1) for all integer n 
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Exercise 12C 
1. Use proof by induction to prove that 

1 + 2 + 3 + 4 .... n 

for all integer n > 1. 

2. Prove, by induction, that 

1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 +.... + n(n + 1) = | (n + 1) (n + 2) 

for all integer n > 1. 

3. Prove, by induction, that 

2 + 4 + 8 + 16 + 32 + .... + 2 n = 2 n + 1 - 2 
for all integer n > 1. 

4. Use proof by induction to prove that 

n 2 

l 3 + 2 3 + 3 3 + 4 3 + 5 3 + .... + n 3 = ~^ (n + l ] 2 

for all integer n > 1. 
5. (a) Verify that the statements 1 + 3 = 4 

1 + 3 + 5 = 9 
1 + 3 + 5 + 7 = 1 6 
1 + 3 + 5 + 7 + 9 = 25 

are consistent with the rule 

1 + 3 + 5 + 7 + .... + (2n - 1) = n 2 . 
(b) Use the method of proof by induction to prove the above rule to be true for all 

integer n > 1. 

6. Use proof by induction to prove that 

1 _L JL JL X JL 2 n - l 
2 + 2 2 + 2 3 + 2 4 + 2 5 + + 2 n " 2 n 

for all integer n > 1. 

7. Use proof by induction to prove that 
1 1 1 1 1 1 

+ + + + + .... + TTTTTT 
1 X 2 2 X 3 3 X 4 4 X 5 5 X 6 n(n + l j 

for all integer n > 1. 

= 2 n(n + 1) 

_ n 
" n + 1 
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Note. 
Many questions in the previous exercise involved expressions like 

1 + 2 + 3 + 4 + 5 + ... 

1 + 3 + 5 + 7 + 9 + ... 

I 3 + 2 3 + 3 3 + 4 3 + 5 3 + .... 
7 

A shorthand way of writing 1 + 2 + 3 + 4 + 5 + 6 + 7 is ^ i . 
i = l 

This is read as "sum all the i values starting from i = 1 and finishing at i = 7", 
(where i takes integer values). 
Using this, summation notation, question 4, for example, could be written: 

n n 2 

Prove, by induction, that ^) i 3 = (n + 1) 2 

i = l 

8. Prove, by induction, that 

1 x 3 x 5 + 2 x 4 x 6 + ....+ n(n + 2)(n + 4) = | ( n + l)(n + 4)(n + 5) 

for all integer n > 1 

9. Use proof by induction to prove that {x - 1) is a factor of 

xn-l 
for all positive integer values of n. 

10. Use proof by induction to prove that 

1 x 2 x 3 x 4 x 5 x 6 .... x n > 3 n 

for all integer values of n > 6. 

11. Use the method of proof by induction to prove that 
7 n + 2 x 1 3 n 

is a multiple of three for all n > 0. 

12. Prove, by induction, that 

2 - 4 + 8 - 1 6 + 32 .... ( - l ) n + 1 2 n = | ( l + ( - l ) n + 1 2 n ) 

for all integer n > 1. 
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Extension Activity: Investigating some conjectures. 
Do you understand the difference between a conjecture and a theorem? 
If, based on our opinion or perhaps some observations or maybe some research, 
we think something to be true we might make a conjecture suggesting it as a 
truth. A conjecture could be our "best guess" at what seems to be the case. It 
may be based on incomplete information and has not been proven. Such a 
conjecture may later be proved to be true, in which case it would then become a 
theorem. On the other hand, perhaps someone, or some event, may prove the 
conjecture to be false. 

You may convince others into believing your conjecture is true even though no 
proof is forthcoming. Just because a conjecture has not been proven true it may 
also not have been proven false and may be considered by all to be a truth, even 
though unproven. A theorem on the other hand is a statement that has been 
proved to be true, often by reasoning from other known truths. 

Investigate each of the following famous conjectures. What does each conjecture 
claim? Give some examples of what it is claiming to be the case. What is the 
history of the conjecture? Who made the conjecture? When? Where? Has it 
since been proven to be true, or perhaps false? Etc. 
Write a report about each conjecture. 

Goldbach's conjecture. 

The twin prime conjecture. 

Fermat's conjecture. 

The four colour conjecture. 
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Miscellaneous Exercise Twelve. 
This miscellaneous exercise may include questions involving the work of this 
chapter, the work of any previous chapters, and the ideas mentioned in the 
preliminary work section at the beginning of the book. 

determine 1. If A = ' 3 ' , B = ' -1 2" , C = 1 -1 l" and D = ' 2 1 0 " 

. 1 1 4. . -1 1 - 1 . 
and D = 

. 1 1 1. 
each of the following. If any cannot be determined state this clearly. 
(a) AB (b) BA (c) BC (d) CD (e) BD 

2. If A = 

AB = 

2 3 
-1 1 

' 13 " , AC = ' 13 ' 
-4 6 

determine matrices B, C, D and E given that 

, DA = [ 6 19 ] , and EA = [ 5 0 ] 

IfA = 2 3 ' , B = 4 21 " 
.-1 4. .9 17. 

andAC = B, findC. 

In the first copy of a new magazine for "would be stamp collectors" an invitation is 
made to each purchaser of the magazine to complete a six month subscription 
order and receive a bonus "free starter pack". Two types of pack are available with 
the contents of each as shown below. 

Number of 
Australian 

stamps 
75 
20 

Number of 
Rest of the world 

stamps 
25 
80 

Each Mainly Australian starter pack: 
Each Rest of the World starter pack: 
We will call this matrix X. 
The offer prompts 210 requests for the Mainly Australian starter pack and 120 
requests for the Rest of the World starter pack. 

210" 
.120. 

We could write this as a column matrix, Y: 

or as a row matrix, Z: 210 120 

(a) Which of the following matrix products could be formed: 
XY, YX, XZ, ZX? 

(b) Of those matrix products in (a) that can be formed, which will contain 
information that is likely to be of use? 

(c) Determine the useful products from (b) and explain the information 
displayed. 
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5. Given that A = x 1 
0 3 

6. Prove that sin 20 = 

and A 2 + A = 

2 tan 9 

6 
P 

0^-8 
q 

determine p, q and x. 

tan 2 6 + 1 

7. Prove that sin 5x cos 3x - cos 6x sin 2x = sin 3x cos x. 

8. (a) Express (5 cos G - 3 sin 0) in the form R cos (0 + a) for a an acute angle in 
radians and correct to two decimal places, 

(b) Hence determine the minimum value of (5 cos 0 - 3 sin 0) and the smallest 
positive value of 0 (in radians and correct to two decimal places) for which it 
occurs. 

9. The matrices A, B and C shown below can be multiplied together to form a single 
matrix if A, B and C are placed in an appropriate order. What is the order and what 
is the single matrix this order produces? 

3 
C = [ 1 0 1 1 ] . A = 

10. If A = 2x x 
4 y 

B = 2 0 1 
- 1 3 2 

and A 2 = 24 p 
L 0 q\ 

find all possible values of x, y, p and q. 

11. If AB = AC, A * 0, then matrix B does not necessarily equal matrix C, as the following 
examples show: 

Example 1: A = [ 1 3 ] , B = 1 2 
2 -2 

C = 4 -4 
1 0 

AB = [ 1 3 ] 1 2 
2 -2 

Thus AB = AC, A ï 0, but B t C. 

4 6 

= [ 7 -4 } AC = [ 1 3 ] 4 -4 
1 0 

= [ 7 - 4 ] 

Example 2: A = 

AB = 4 6 
2 3 

2 3 

2 -1 
1 2 

B = 

14 8 
7 4 

2 -1 
1 2 

AC = 

C = 

4 6 
2 3 

-1 2 
3 0 

-1 2 
3 0 

14 8 
7 4 

Thus AB = AC, A * 0, but B * C. 

Do the examples above conflict with the following proof that if AB = AC then B = C? 
If AB = AC 
then A^AB = A^AC 

IB = IC 
and so B = C 
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12. BC is just one product that can be formed using two matrices selected from the four 
below. List all the other products that could be formed in this way. (The selection 
of the two matrices can involve the same matrix being selected twice.) 

A = 1 2 1 
2 2 0 

B = 
= [ 2 -3 1 1 , C = 

" 1 0 1 0 
c = 0 , D = 3 0 1 

1 2 1 -1 

13. Triangle ABC has vertices A(2, 0), B(2, 3) and C(4, 3). Find the coordinates of the 
vertices of triangle A'B'C, the image of ABC when transformed using the 

1 3 transformation matrix 
0 1 

Show both AABC and AA'B'C on grid paper. 
What is the transformation this matrix represents? 

14. Prove that 
sec x cosec x cot x = 1 + cot 2 x 

15. Find all solutions to the equation 
7 sin x + cos x = 5 

rounding answers to two decimal places when rounding is appropriate. 

16. Prove, by induction, that 
12 + 19 + 31 + 53 +.... + [ 5(1 + 2 n~ 1) + 2n] = n(n + 6) + 5(2 n - 1) 

for all integer n > 1. 

17. Prove by induction that 3 2 n + 4 - 2 2 n is divisible by 5 for all positive integer n. 

18. Prove that 5 n + 7 x 13 n is a multiple of 8 for all integer n > 1. 

19. Prove, by induction, that for r 11 and all integer n > 1, 




